Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Acta Trop ; 255: 107212, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38641222

ABSTRACT

Biomphalaria glabrata is a freshwater snail and the obligatory intermediate host of Schistosoma mansoni parasite, the etiologic agent of intestinal Schistosomiasis, in South America and Caribbean. Interestingly in such host-parasite interactions, compatibility varies between populations, strains or individuals. This observed compatibility polymorphism is based on a complex molecular-matching-phenotype, the molecular bases of which have been investigated in numerous studies, notably by comparing between different strains or geographical isolates or clonal selected snail lines. Herein we propose to decipher the constitutive molecular support of this interaction in selected non-clonal resistant and susceptible snail strain originating from the same natural population from Brazil and thus having the same genetic background. Thanks to a global RNAseq transcriptomic approach on whole snail, we identified a total of 328 differentially expressed genes between resistant and susceptible phenotypes among which 129 were up-regulated and 199 down-regulated. Metabolomic studies were used to corroborate the RNAseq results. The activation of immune genes and specific metabolic pathways in resistant snails might provide them with the capacity to better respond to parasite infection.

2.
Front Immunol ; 14: 1293009, 2023.
Article in English | MEDLINE | ID: mdl-38106408

ABSTRACT

Schistosomiasis is considered as a significant public health problem, imposing a deeper understanding of the intricate interplay between parasites and their hosts. Unfortunately, current invasive methodologies employed to study the compatibility and the parasite development impose limitations on exploring diverse strains under various environmental conditions, thereby impeding progress in the field. In this study, we demonstrate the usefulness for the trematode parasite Schistosma mansoni, leveranging a fluorescence-imaging-based approach that employs fluorescein 5-chloromethylfluorescein diacetate (CMFDA) and 5-chloromethylfluorescein diacetate (CMAC) as organism tracker for intramolluscan studies involving the host snail Biomphalaria glabrata. These probes represent key tools for qualitatively assessing snail infections with unmatched accuracy and precision. By monitoring the fluorescence of parasites within the snail vector, our method exposes an unprecedented glimpse into the host-parasite compatibility landscape. The simplicity and sensitivity of our approach render it an ideal choice for evolutionary studies, as it sheds light on the intricate mechanisms governing host-parasite interactions. Fluorescent probe-based methods play a pivotal role in characterizing factors influencing parasite development and phenotype of compatibility, paving the way for innovative, effective, and sustainable solutions to enhance our understanding host-parasite immunobiological interaction and compatibility.


Subject(s)
Biomphalaria , Parasites , Animals , Schistosoma mansoni/genetics , Biomphalaria/parasitology , Snails , Phenotype
3.
PeerJ ; 11: e16639, 2023.
Article in English | MEDLINE | ID: mdl-38144201

ABSTRACT

Background: Microbial communities associated with macroorganisms might affect host physiology and homeostasis. Bacteria are well studied in this context, but the diversity of microeukaryotes, as well as covariations with bacterial communities, remains almost unknown. Methods: To study microeukaryotic communities associated with Planorbidae snails, we developed a blocking primer to reduce amplification of host DNA during metabarcoding analyses. Analyses of alpha and beta diversities were computed to describe microeukaryotes and bacteria using metabarcoding of 18S and 16S rRNA genes, respectively. Results: Only three phyla (Amoebozoa, Opisthokonta and Alveolata) were dominant for microeukaryotes. Bacteria were more diverse with five dominant phyla (Proteobacteria, Bacteroidetes, Tenericutes, Planctomycetes and Actinobacteria). The composition of microeukaryotes and bacteria were correlated for the Biomphalaria glabrata species, but not for Planorbarius metidjensis. Network analysis highlighted clusters of covarying taxa. Among them, several links might reflect top-down control of bacterial populations by microeukaryotes, but also possible competition between microeukaryotes having opposite distributions (Lobosa and Ichthyosporea). The role of these taxa remains unknown, but we believe that the blocking primer developed herein offers new possibilities to study the hidden diversity of microeukaryotes within snail microbiota, and to shed light on their underestimated interactions with bacteria and hosts.


Subject(s)
Bacteria , Microbiota , Animals , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Eukaryota/genetics , Microbiota/genetics , Snails/genetics
4.
Trends Parasitol ; 39(7): 563-574, 2023 07.
Article in English | MEDLINE | ID: mdl-37120369

ABSTRACT

In a One-Health context, it is urgent to establish the links between environmental degradation, biodiversity loss, and the circulation of pathogens. Here we review and literally draw a general vision of aquatic environmental factors that interface with Schistosoma species, agents of schistosomiasis, and ultimately modulate their transmission at the ecosystem scale. From this synthesis, we introduce the concept of ecosystem competence defined as 'the propensity of an ecosystem to amplify or mitigate an incoming quantity of a given pathogen that can be ultimately transmitted to their definitive hosts'. Ecosystem competence integrates all mechanisms at the ecosystem scale underlying the transmission risk of a given pathogen and offers a promising measure for operationalizing the One-Health concept.


Subject(s)
Ecosystem , Schistosomiasis , Animals , Schistosoma , Biodiversity
5.
Acta Trop ; 240: 106840, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36681315

ABSTRACT

The transformation of Schistosoma mansoni miracidia into mother sporocysts is induced, either in vivo by the penetration of the free-living larval stage, the miracidium, in the snail Biomphalaria glabrata or in vitro following the incubation of the miracidium in Chernin's Balanced Salt Solution (CBSS) or Bge (B. glabrata embryonic cell line) culture medium. The in vitro development of S. mansoni miracidium into mother sporocyst was monitored by Scanning Electron Microscopy (SEM) from 2.5 h to 120 h in CBSS. The transformation starts when the miracidium ciliate plates detach due to the proliferation of the intercellular ridge associated with the degeneration of mid-body papillae of the miracidium. The loss of ciliated plates causes the appearing of scars, filled across time by the proliferation of a new tegument originating from the interplate ridge. This new tegument covers the entire body of the metamorphosing parasite and differentiates over time, allowing some exchanges (uptakes or secretion/excretion) between the parasite and its host. In contrast to the well-described development of adult and free-living larval stages of S. mansoni using SEM, the developmental transformation of intramolluscan stages, especially tegumental changes in the mother sporocyst, has been sparcely documented at the ultrastructural level. In addition, taking into account the latest literature on miracidium electron microscopy and the advances in SEM technologies over the last thirty years, the present study gathers three main objectives: (i) Fill the gap of tegument scanning electron micrographs of in vitro transforming sporocysts; (ii) Update the current bibliographic miracidia and sporocysts image bank due to rapid evolution of SEM technology; (iii) Understand and describe the critical steps and duration of the in vitro miracidium-to-sporocyst transformation process to assist in understanding the interaction between the larval surface and snail immune factors.


Subject(s)
Biomphalaria , Parasites , Animals , Female , Humans , Schistosoma mansoni , Oocysts , Time Factors , Mothers , Biomphalaria/parasitology , Larva
6.
Front Immunol ; 13: 956871, 2022.
Article in English | MEDLINE | ID: mdl-36131936

ABSTRACT

The freshwater snail Biomphalaria glabrata is an intermediate host of Schistosoma mansoni, the agent of human intestinal schistosomiasis. However, much is to be discovered about its innate immune system that appears as a complex black box, in which the immune cells (called hemocytes) play a major role in both cellular and humoral response towards pathogens. Until now, hemocyte classification has been based exclusively on cell morphology and ultrastructural description and depending on the authors considered from 2 to 5 hemocyte populations have been described. In this study, we proposed to evaluate the hemocyte heterogeneity at the transcriptomic level. To accomplish this objective, we used single cell RNA sequencing (scRNAseq) technology coupled to a droplet-based system to separate hemocytes and analyze their transcriptome at a unique cell level in naive Biomphalaria glabrata snails. We were able to demonstrate the presence of 7 hemocyte transcriptomic populations defined by the expression of specific marker genes. As a result, scRNAseq approach showed a high heterogeneity within hemocytes, but provides a detailed description of the different hemocyte transcriptomic populations in B. glabrata supported by distinct cellular functions and lineage trajectory. As a main result, scRNAseq revealed the 3 main population as a super-group of hemocyte diversity but, on the contrary, a great hemocytes plasticity with a probable capacity of hemocytes to engage to different activation pathways. This work opens a new field of research to understand the role of hemocytes particularly in response to pathogens, and towards S. mansoni parasites.


Subject(s)
Biomphalaria , Schistosomiasis mansoni , Animals , Biomphalaria/parasitology , Hemocytes , Humans , Schistosoma mansoni , Schistosomiasis mansoni/metabolism , Sequence Analysis, RNA , Snails
7.
Front Immunol ; 13: 794186, 2022.
Article in English | MEDLINE | ID: mdl-35140717

ABSTRACT

One of the most interesting biological models is that of snail-trematode interactions, many of which ultimately result in the transmission of several important diseases, particularly in the tropics. Herein, we review the scientific advances on a trematode-snail system in which certain populations of Pseudosuccinea columella (a common host species for trematodes) have been demonstrated naturally-resistant to Fasciola hepatica, in association with an effective encapsulation of the parasite by innate immune cells of the host, the hemocytes. Emphasis is made on the molecular and immunological features characterizing each P. columella phenotype in relation to their anti-parasitic competence, their distinctive ecological patterns and the existence of a significant cost of resistance. An integrative overview of the resistance to F. hepatica through comparative immunobiology, genetics and ecology is presented to hypothesize on the possible origins and evolution of this phenomenon and to postulate significant roles for parasite mediated-selection and environmental factors in shaping and maintaining the resistant phenotype in the field. Lastly, clues into future experimental perspectives to deeply characterize the interplay between P. columella and F. hepatica and the immunobiology of the resistance are also included. The advances revised in the present paper are only beginning to unravel mechanisms of anti-parasite innate defense responses and their evolutionary bases, and can facilitate the development of prospective approaches towards practical applications of P. columella resistance.


Subject(s)
Animal Diseases/parasitology , Disease Susceptibility , Fasciola hepatica , Fascioliasis/veterinary , Host-Parasite Interactions , Snails/parasitology , Animals , Biological Evolution , Cuba
8.
Microorganisms ; 9(5)2021 May 18.
Article in English | MEDLINE | ID: mdl-34070104

ABSTRACT

Host-parasite interaction can result in a strong alteration of the host-associated microbiota. This dysbiosis can affect the fitness of the host; can modify pathogen interaction and the outcome of diseases. Biomphalaria glabrata is the snail intermediate host of the trematode Schistosoma mansoni, the agent of human schistosomiasis, causing hundreds of thousands of deaths every year. Here, we present the first study of the snail bacterial microbiota in response to Schistosoma infection. We examined the interplay between B. glabrata, S. mansoni and host microbiota. Snails were infected and the microbiota composition was analysed by 16S rDNA amplicon sequencing approach. We demonstrated that the microbial composition of water did not affect the microbiota composition. Then, we characterised the Biomphalaria bacterial microbiota at the individual scale in both naive and infected snails. Sympatric and allopatric strains of parasites were used for infections and re-infections to analyse the modification or dysbiosis of snail microbiota in different host-parasite co-evolutionary contexts. Concomitantly, using RNAseq, we investigated the link between bacterial microbiota dysbiosis and snail anti-microbial peptide immune response. This work paves the way for a better understanding of snail/schistosome interaction and should have critical consequences in terms of snail control strategies for fighting schistosomiasis disease in the field.

9.
Front Immunol ; 12: 635131, 2021.
Article in English | MEDLINE | ID: mdl-33868258

ABSTRACT

Aerolysins initially characterized as virulence factors in bacteria are increasingly found in massive genome and transcriptome sequencing data from metazoans. Horizontal gene transfer has been demonstrated as the main way of aerolysin-related toxins acquisition in metazoans. However, only few studies have focused on their potential biological functions in such organisms. Herein, we present an extensive characterization of a multigene family encoding aerolysins - named biomphalysin - in Biomphalaria glabrata snail, the intermediate host of the trematode Schistosoma mansoni. Our results highlight that duplication and domestication of an acquired bacterial toxin gene in the snail genome result in the acquisition of a novel and diversified toxin family. Twenty-three biomphalysin genes were identified. All are expressed and exhibited a tissue-specific expression pattern. An in silico structural analysis was performed to highlight the central role played by two distinct domains i) a large lobe involved in the lytic function of these snail toxins which constrained their evolution and ii) a small lobe which is structurally variable between biomphalysin toxins and that matched to various functional domains involved in moiety recognition of targets cells. A functional approach suggests that the repertoire of biomphalysins that bind to pathogens, depends on the type of pathogen encountered. These results underline a neo-and sub-functionalization of the biomphalysin toxins, which have the potential to increase the range of effectors in the snail's immune arsenal.


Subject(s)
Biomphalaria/genetics , Disease Vectors , Evolution, Molecular , Multigene Family , Pore Forming Cytotoxic Proteins/genetics , Schistosoma mansoni/pathogenicity , Animals , Biomphalaria/metabolism , Biomphalaria/parasitology , Gene Duplication , Genetic Variation , Host-Parasite Interactions , Phylogeny , Pore Forming Cytotoxic Proteins/metabolism , Species Specificity
10.
PeerJ ; 9: e10895, 2021.
Article in English | MEDLINE | ID: mdl-33665030

ABSTRACT

Biomphalaria glabrata is one of the snail intermediate hosts of Schistosoma mansoni, the causative agent of intestinal schistosomiasis disease. Numerous molecular studies using comparative approaches between susceptible and resistant snails to S. mansoni infection have helped identify numerous snail key candidates supporting such susceptible/resistant status. The functional approach using RNA interference (RNAi) remains crucial to validate the function of such candidates. CRISPR-Cas systems are still under development in many laboratories, and RNA interference remains the best tool to study B. glabrata snail genetics. Herein, we describe the use of modified small interfering RNA (siRNA) molecules to enhance cell delivery, especially into hemocytes, the snail immune cells. Modification of siRNA with 5' Cholesteryl TriEthylene Glycol (Chol-TEG) promotes cellular uptake by hemocytes, nearly eightfold over that of unmodified siRNA. FACS analysis reveals that more than 50% of hemocytes have internalized Chol-TEG siRNA conjugated to Cy3 fluorophores, 2 hours only after in vivo injection into snails. Chol-TEG siRNA targeting BgTEP1 (ThioEster-containing Protein), a parasite binding protein, reduced BgTEP1 transcript expression by 70-80% compared to control. The level of BgTEP1 protein secreted in the hemolymph was also decreased. However, despite the BgTEP1 knock-down at both RNA and protein levels, snail compatibility with its sympatric parasite is not affected suggesting functional redundancy among the BgTEP genes family in snail-schistosoma interaction.

11.
Trends Parasitol ; 37(1): 6-8, 2021 01.
Article in English | MEDLINE | ID: mdl-33168425

ABSTRACT

Efforts to eliminate schistosomiasis are hindered by incomplete efficacy of the only FDA-approved antischistosomal drug, praziquantel. By using postgenomic technologies, Wendt et al. and Wang et al. deciphered the function of several genes required for worm survival and pathogenesis, which opens the way for the development of innovative parasite-targeted therapies.


Subject(s)
Schistosomiasis , Schistosomicides , Animals , Praziquantel/therapeutic use , RNA-Seq , Schistosoma mansoni , Schistosomiasis/drug therapy
12.
PLoS Pathog ; 16(10): e1008935, 2020 10.
Article in English | MEDLINE | ID: mdl-33057453

ABSTRACT

In a number of species, individuals exposed to pathogens can mount an immune response and transmit this immunological experience to their offspring, thereby protecting them against persistent threats. Such vertical transfer of immunity, named trans-generational immune priming (TGIP), has been described in both vertebrates and invertebrates. Although increasingly studied during the last decade, the mechanisms underlying TGIP in invertebrates are still elusive, especially those protecting the earliest offspring life stage, i.e. the embryo developing in the egg. In the present study, we combined different proteomic and transcriptomic approaches to determine whether mothers transfer a "signal" (such as fragments of infecting bacteria), mRNA and/or protein/peptide effectors to protect their eggs against two natural bacterial pathogens, namely the Gram-positive Bacillus thuringiensis and the Gram-negative Serratia entomophila. By taking the mealworm beetle Tenebrio molitor as a biological model, our results suggest that eggs are mainly protected by an active direct transfer of a restricted number of immune proteins and of antimicrobial peptides. In contrast, the present data do not support the involvement of mRNA transfer while the transmission of a "signal", if it happens, is marginal and only occurs within 24h after maternal exposure to bacteria. This work exemplifies how combining global approaches helps to disentangle the different scenarios of a complex trait, providing a comprehensive characterization of TGIP mechanisms in T. molitor. It also paves the way for future alike studies focusing on TGIP in a wide range of invertebrates and vertebrates to identify additional candidates that could be specific to TGIP and to investigate whether the TGIP mechanisms found herein are specific or common to all insect species.


Subject(s)
Bacterial Infections/immunology , Larva/microbiology , Ovum/immunology , Serratia/pathogenicity , Tenebrio/microbiology , Animals , Bacillus thuringiensis/pathogenicity , Immunity/immunology , Proteomics/methods , Tenebrio/immunology
13.
Parasit Vectors ; 13(1): 486, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32967724

ABSTRACT

BACKGROUND: Freshwater snails are the intermediate hosts of a large variety of trematode flukes such as Schistosoma mansoni responsible for one of the most important parasitic diseases caused by helminths, affecting 67 million people worldwide. Recently, the WHO Global Vector Control Response 2017-2030 (GVCR) programme reinforced its message for safer molluscicides as part of required strategies to strengthen vector control worldwide. Here, we present the essential oil from Eryngium triquetrum as a powerful product with molluscicide and parasiticide effect against S. mansoni and the snail intermediate host Biomphalaria glabrata. METHODS: In the present study, we describe using several experimental approaches, the chemical composition of E. triquetrum essential oil extract and its biological effects against the snail B. glabrata and its parasite S. mansoni. Vector and the free-swimming larval stages of the parasite were exposed to different oil concentrations to determine the lethal concentration required to produce a mortality of 50% (LC50) and 90% (LC90). In addition, toxic activity of this essential oil was analyzed against embryos of B. glabrata snails by monitoring egg hatching and snail development. Also, short-time exposure to sublethal molluscicide concentrations on S. mansoni miracidia was performed to test a potential effect on parasite infectivity on snails. Mortality of miracidia and cercariae of S. mansoni is complete for 5, 1 and 0.5 ppm of oil extract after 1 and 4 h exposure. RESULTS: The major chemical component found in E. triquetrum oil determined by GC-FID and GC/MS analyses is an aliphatic polyacetylene molecule, the falcarinol with 86.9-93.1% of the total composition. The LC50 and LC90 values for uninfected snails were 0.61 and 1.02 ppm respectively for 24 h exposure. At 0.5 ppm, the essential oil was two times more toxic to parasitized snails with a mortality rate of 88.8 ± 4.8%. Moderate embryonic lethal effects were observed at the concentration of 1 ppm. Severe surface damage in miracidia was observed with a general loss of cilia that probably cause their immobility. Miracidia exposed 30 min to low concentration of plant extract (0.1 ppm) were less infective with 3.3% of prevalence compare to untreated with a prevalence of 44%. CONCLUSIONS: Essential oil extracted from E. triquetrum and falcarinol must be considered as a promising product for the development of new interventions for schistosomiasis control and could proceed to be tested on Phase II according to the WHO requirements.


Subject(s)
Anthelmintics/pharmacology , Biomphalaria/drug effects , Eryngium/chemistry , Molluscacides/pharmacology , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Schistosoma mansoni/drug effects , Animals , Biomphalaria/parasitology , Disease Vectors , Humans , Lethal Dose 50 , Plant Extracts/pharmacology , Schistosoma mansoni/growth & development , Schistosomiasis mansoni/parasitology
14.
mBio ; 11(2)2020 03 10.
Article in English | MEDLINE | ID: mdl-32156821

ABSTRACT

Over the last decade, innate immune priming has been evidenced in many invertebrate phyla. If mechanistic models have been proposed, molecular studies aiming to substantiate these models have remained scarce. We reveal here the transcriptional signature associated with immune priming in the oyster Crassostrea gigas Oysters were fully protected against Ostreid herpesvirus 1 (OsHV-1), a major oyster pathogen, after priming with poly(I·C), which mimics viral double-stranded RNA. Global analysis through RNA sequencing of oyster and viral genes after immune priming and viral infection revealed that poly(I·C) induces a strong antiviral response that impairs OsHV-1 replication. Protection is based on a sustained upregulation of immune genes, notably genes involved in the interferon pathway and apoptosis, which control subsequent viral infection. This persistent antiviral alert state remains active over 4 months and supports antiviral protection in the long term. This acquired resistance mechanism reinforces the molecular foundations of the sustained response model of immune priming. It further opens the way to applications (pseudovaccination) to cope with a recurrent disease that causes dramatic economic losses in the shellfish farming industry worldwide.IMPORTANCE In the last decade, important discoveries have shown that resistance to reinfection can be achieved without a functional adaptive immune system, introducing the concept of innate immune memory in invertebrates. However, this field has been constrained by the limited number of molecular mechanisms evidenced to support these phenomena. Taking advantage of an invertebrate species, the Pacific oyster (Crassostrea gigas), in which we evidenced one of the longest and most effective periods of protection against viral infection observed in an invertebrate, we provide the first comprehensive transcriptomic analysis of antiviral innate immune priming. We show that priming with poly(I·C) induced a massive upregulation of immune-related genes, which control subsequent viral infection, and it was maintained for over 4 months after priming. This acquired resistant mechanism reinforces the molecular foundations of the sustained response model of immune priming. It opens the way to pseudovaccination to prevent the recurrent diseases that currently afflict economically or ecologically important invertebrates.


Subject(s)
Crassostrea/genetics , Crassostrea/immunology , DNA Virus Infections/immunology , DNA Viruses/immunology , Immunity, Innate , Animals , DNA Virus Infections/genetics , DNA Viruses/pathogenicity , Gene Expression Profiling , Poly I-C/immunology , Up-Regulation
15.
Genes (Basel) ; 11(1)2020 01 07.
Article in English | MEDLINE | ID: mdl-31936048

ABSTRACT

Biomphalaria glabrata is a freshwater Planorbidae snail. In its environment, this mollusk faces numerous microorganisms or pathogens, and has developed sophisticated innate immune mechanisms to survive. The mechanisms of recognition are quite well understood in Biomphalaria glabrata, but immune effectors have been seldom described. In this study, we analyzed a new family of potential immune effectors and characterized five new genes that were named Glabralysins. The five Glabralysin genes showed different genomic structures and the high degree of amino acid identity between the Glabralysins, and the presence of the conserved ETX/MTX2 domain, support the hypothesis that they are pore-forming toxins. In addition, tertiary structure prediction confirms that they are structurally related to a subset of Cry toxins from Bacillus thuringiensis, including Cry23, Cry45, and Cry51. Finally, we investigated their gene expression profiles in snail tissues and demonstrated a mosaic transcription. We highlight the specificity in Glabralysin expression following immune stimulation with bacteria, yeast or trematode parasites. Interestingly, one Glabralysin was found to be expressed in immune-specialized hemocytes, and two others were induced following parasite exposure.


Subject(s)
Biomphalaria/genetics , Biomphalaria/immunology , Pore Forming Cytotoxic Proteins/genetics , Amino Acids/genetics , Animals , Computational Biology/methods , Disease Vectors , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunity, Innate/immunology , Pore Forming Cytotoxic Proteins/metabolism , Protein Structure, Tertiary/genetics , Snails/metabolism , Toxins, Biological/genetics , Toxins, Biological/metabolism , Transcriptome
16.
Genes (Basel) ; 11(1)2020 01 07.
Article in English | MEDLINE | ID: mdl-31936127

ABSTRACT

Thioester-containing proteins (TEPs) superfamily is known to play important innate immune functions in a wide range of animal phyla. TEPs are involved in recognition, and in the direct or mediated killing of several invading organisms or pathogens. While several TEPs have been identified in many invertebrates, only one TEP (named BgTEP) has been previously characterized in the freshwater snail, Biomphalaria glabrata. As the presence of a single member of that family is particularly intriguing, transcriptomic data and the recently published genome were used to explore the presence of other BgTEP related genes in B. glabrata. Ten other TEP members have been reported and classified into different subfamilies: Three complement-like factors (BgC3-1 to BgC3-3), one α-2-macroblobulin (BgA2M), two macroglobulin complement-related proteins (BgMCR1, BgMCR2), one CD109 (BgCD109), and three insect TEP (BgTEP2 to BgTEP4) in addition to the previously characterized BgTEP that we renamed BgTEP1. This is the first report on such a level of TEP diversity and of the presence of macroglobulin complement-related proteins (MCR) in mollusks. Gene structure analysis revealed alternative splicing in the highly variable region of three members (BgA2M, BgCD109, and BgTEP2) with a particularly unexpected diversity for BgTEP2. Finally, different gene expression profiles tend to indicate specific functions for such novel family members.


Subject(s)
Biomphalaria/genetics , Immunity, Innate/genetics , Amino Acid Sequence/genetics , Animals , Fresh Water , Gene Expression Profiling/methods , Phylogeny , Schistosoma mansoni , Sequence Alignment/methods , Transcription Factors/genetics , Transcriptome/genetics
17.
Dev Comp Immunol ; 102: 103485, 2020 01.
Article in English | MEDLINE | ID: mdl-31461636

ABSTRACT

The Fasciola hepatica/Pseudosuccinea columella interaction in Cuba involves a unique pattern of phenotypes; while most snails are susceptible, some field populations are naturally resistant to infection and parasites are encapsulated by snail hemocytes. Thus, we investigated the hemocytes of resistant (R) and susceptible (S) P. columella, in particular morphology, abundance, proliferation and in vitro encapsulation activity following exposure to F. hepatica. Compared to susceptible P. columella, hemocytes from exposed resistant snails showed increased levels of spreading and aggregation (large adherent cells), proliferation of circulating blast-like cells and encapsulation activity of the hemocytes, along with a higher expression of the cytokine granulin. By contrast, there was evidence of a putative F. hepatica-driven inhibition of host immunity, only in susceptible snails. Additionally, (pre-)incubation of naïve hemocytes from P. columella (R and S) with different monosaccharides was associated with lower encapsulation activity of F. hepatica larvae. This suggests the involvement in this host-parasite interaction of lectins and lectins receptors (particularly related to mannose and fucose sensing) in association with hemocyte activation and/or binding to F. hepatica.


Subject(s)
Disease Resistance , Fasciola hepatica/physiology , Hemocytes/immunology , Host-Parasite Interactions/immunology , Larva/physiology , Snails/immunology , Animals , Cell Differentiation , Cell Proliferation , Cuba , Disease Susceptibility , Gene Expression , Granulins/genetics , Granulins/immunology , Hemocytes/parasitology , Immunity, Innate , Monosaccharides/chemistry , Monosaccharides/immunology , Phenotype , Snails/parasitology
18.
Sci Rep ; 9(1): 14359, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31591422

ABSTRACT

Pseudosuccinea columella snails transmit the trematode Fasciola hepatica, but in Cuba, six naturally occurring populations successfully resist parasite infection. Here, we present an updated distribution of P. columella in Cuba; 68 positive sites with the earliest records more abundant in west-central Cuba and with east-central populations generally corresponding to the newest samples. No records were found farther east. The IPA site reported 10.5% prevalence of F. hepatica-infected snails. Population genetics, studied through microsatellites, showed low allelic and multilocus genotypic richness (MLGT), mainly in susceptible populations, strong deviations from panmixia and high self-fertilization rates. Susceptible individuals were grouped in one major cluster containing the majority of MLGT, and two independent clusters grouped the MLGT of resistant individuals from western and central populations, respectively. From these, we propose that several introductions of P. columella occurred in Cuba, primarily in the west, with the early arrivals deriving on the resistant populations. A more recent introduction of susceptible P. columella carrying MLGT T and Y may have occurred, where the latter spread quickly through the island and possibly increase the risk of parasite transmission in Cuba since all snails naturally infected with F. hepatica were carriers of the MLGT Y. Interestingly, even though resistant populations are highly diverse and are likely the oldest within Cuba, they are only found in six localities characterized by soft (total hardness, TH = 6.3 ± 1.03°d) and slightly acidic (pH = 6.2 ± 0.12) waters with low richness in snail species (3.2 ± 1.02). This tendency was also observed in a two-year follow-up ecological study that was conducted on a farm where both phenotypes occurred in sympatry; colonization events by resistant over susceptible snails coincided with a reduction in the pH and TH of the water. A comparison of life traits in susceptible and resistant isolates reared at two different pH/TH conditions (5.9/4°d or 7.8/14°d) showed that low pH/TH negatively affects P. columella, irrespective of the phenotype. However, evidence of higher tolerance (higher survival, life expectancy, egg viability) to such conditions was observed in resistant isolates. Finally, we speculate that the limited distribution of resistant populations might be related to a better exploitation of sites that are less suitable to snails (thus, with lower competition), rather than to a differential ecological restriction to specific environmental conditions from susceptible P. columella.


Subject(s)
Fasciola hepatica/pathogenicity , Host-Parasite Interactions/genetics , Parasitic Diseases/genetics , Snails/genetics , Animals , Cuba/epidemiology , Genetic Predisposition to Disease , Genetics, Population , Humans , Parasitic Diseases/parasitology , Phenotype , Snails/parasitology , Water/parasitology
19.
Front Immunol ; 10: 1938, 2019.
Article in English | MEDLINE | ID: mdl-31475001

ABSTRACT

Trans-generational immune priming (TGIP) refers to the transfer of the parental immunological experience to its progeny. This may result in offspring protection from repeated encounters with pathogens that persist across generations. Although extensively studied in vertebrates for over a century, this phenomenon has only been identified 20 years ago in invertebrates. Since then, invertebrate TGIP has been the focus of an increasing interest, with half of studies published during the last few years. TGIP has now been tested in several invertebrate systems using various experimental approaches and measures to study it at both functional and evolutionary levels. However, drawing an overall picture of TGIP from available studies still appears to be a difficult task. Here, we provide a comprehensive review of TGIP in invertebrates with the objective of confronting all the data generated to date to highlight the main features and mechanisms identified in the context of its ecology and evolution. To this purpose, we describe all the articles reporting experimental investigation of TGIP in invertebrates and propose a critical analysis of the experimental procedures performed to study this phenomenon. We then investigate the outcome of TGIP in the offspring and its ecological and evolutionary relevance before reviewing the potential molecular mechanisms identified to date. In the light of this review, we build hypothetical scenarios of the mechanisms through which TGIP might be achieved and propose guidelines for future investigations.


Subject(s)
Adaptation, Physiological/immunology , Adaptive Immunity/immunology , Immune System/immunology , Inheritance Patterns/immunology , Invertebrates/immunology , Adaptation, Physiological/genetics , Adaptive Immunity/genetics , Animals , Evolution, Molecular , Female , Immune System/metabolism , Inheritance Patterns/genetics , Invertebrates/classification , Invertebrates/genetics , Larva/genetics , Larva/immunology , Male
20.
Dev Comp Immunol ; 101: 103463, 2019 12.
Article in English | MEDLINE | ID: mdl-31381929

ABSTRACT

The snail Pseudosuccinea columella is one of the main vectors of the medically-important trematode Fasciola hepatica. In Cuba, the existence of natural P. columella populations that are either susceptible or resistant to F. hepatica infection offers a unique snail-parasite for study of parasite-host compatibility and immune function in gastropods. Here, we review all previous literature on this system and present new "omic" data that provide a molecular baseline of both P. columella phenotypes from naïve snails. Comparison of whole snail transcriptomes (RNAseq) and the proteomes of the albumen gland (2D-electrophoresis, MS) revealed that resistant and susceptible strains differed mainly in an enrichment of particular biological processes/functions and a greater abundance of proteins/transcripts associated with immune defense/stress response in resistant snails. These results indicate a differential allocation of molecular resources to self-maintenance and survival in resistant P. columella that may cause enhanced responsiveness to stressors (i.e. F. hepatica infection or tolerance to variations in environmental pH/total water hardness), possibly as trade-off against reproduction and the ecological cost of resistance previously suggested in resistant populations of P. columella.


Subject(s)
Host-Parasite Interactions/immunology , Immunity, Innate/genetics , Snails/immunology , Snails/parasitology , Animals , Fasciola hepatica , Host-Parasite Interactions/genetics , Immunity, Innate/immunology , Snails/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...